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Organic  solar  cell  (OSC)  has  attracted  great  interests  due
to  its  potential  applications[1–9].  To  date,  18%  power  conver-
sion  efficiency  (PCE)  has  been  achieved  in  single-junction
OSC[10−13],  indicating the feasibility  of  commercialization.  This
photovoltaic technology currently faces the performance gap
between laboratory cells and large-area modules. The develop-
ment  of  high-PCE  devices  with  scalable  coating/printing
methods is critical. Most of the high-PCE OSCs made with coat-
ing/printing methods are processed with hazardous halogen-
ated solvents and additives[14−16].  In mass production, the use
of halogenated solvents will  pose safety, health, and environ-
mental  issues.  Non-halogenated  solvents  (e.g. o-xylene)  are
considered  as  "green"  solvents  to  replace  conventional
solvents.  However,  the  realization  of  high-PCE  OSCs  pro-
cessed with green solvents is via spin coating, rather than coat-
ing  and  printing  methods[17].  When  using  different  solvents
and different deposition methods, the solvents present differ-
ent removal rates, and the optimal morphology is quite differ-
ent[18−20].  It  is  still  challenging  to  make  high-PCE  OSCs  with
green  solvents  through  coating  and  printing  methods[21−25].
Previously,  Li et  al.  reported  a  polymer  donor  PTQ10
(Fig.  S1)[26, 27].  In  this  work,  we  used  a  PTQ10’s  derivative
(PHT4)  and  acceptor  IT-4Cl  (Fig.  1(a))  to  make  blade-coated
OSCs from o-xylene. We investigated the vacuum-assisted dry-
ing  from o-xylene  solution  (Fig.  1(b)).  A  PCE  of  13.4%  was
achieved.  When  PM6:Y6:PC71BM  solar  cells[28] were  made
through the same process,  the PCE reached 17.01% (certified
16.45%).

To  describe  how  vacuum-assisted  drying  affects  the  dy-
namic drying process of the active layer[29], we used an in situ
transient monitoring technique to track the drying process of
PHT4:IT-4Cl  film.  The  drying  time  was  greatly  reduced  from
524 to 12 s by vacuum treatment (Fig. 1(c)). According to atom-

ic  force  microscopy  (AFM)  images  in Fig.  1(d),  the  topo-
graphy for PHT4:IT-4Cl film is significantly affected. Granular to-
pography was observed in the film dried in air. The surface of
the  film  dried  in  vacuum  is  much  smoother.  The  root-mean-
square  roughness  is  reduced from 21.9  to  5.6  nm.  A  smooth-
er  surface  suggests  fine  phase  separation,  which  might  favor
exciton spliting[30].

Fig.  1(e) presents  the  line-cut  profiles  of  grazing  incid-
ence  wide-angle  X-ray  scattering  (GIWAXS)  patterns  (Fig.  S2).
For  both  cases,  a  prominent  peak  located  at  1.8  Å–1 is  found
in out-of-plane profile, which comes from the π–π stacking of
molecules.  The  corresponding  d-distance  is  3.4  Å.  Both
pristine  PHT4  and  IT-4Cl  have  π–π  stacking  peak  at  1.8  Å–1

(Fig.  S3).  For  the  film  dried  in  vacuum,  the  out-of-plane  line-
cut  profile  shows a  slightly  stronger  π–π stacking signal  than
the film dried in air,  the corresponding coherence length (CL)
increased  from  25.6  Å  (air)  to  27.8  Å  (vacuum).  The  stronger
π–π  stacking  favors  charge  transport[12],  thus  improving
short-circuit current density (Jsc).

The  solar  cells  with  a  structure  of  ITO/ZnO/PFN-
Br/PHT4:IT-4Cl/MoO3/Ag  were  made.  The  energy  level  align-
ment in the device is  shown in Fig.  S4.  The blade-coated act-
ive  layer  dried  in  air  gave  a  PCE  of  7.4%.  When  vacuum-as-
sisted drying was applied, the cell gave a much higher PCE of
13.4%  (Fig.  1(f) and  Table  S1).  The  external  quantum  effi-
ciency  (EQE)  increased  over  entire  spectrum  (Fig.  S5).  The
EQE reaches to 83% at ~ 790 nm, which corresponds to the re-
sponse of IT-4Cl (Figs. S6 and S7). The integrated Jsc from EQE
is  22.54  mA/cm2,  which  is  consistent  with  the  measured Jsc.
The  increase  of Jsc could  result  from  the  finer  phase  separa-
tion  and  better  charge  transport.  The Voc for  PHT4:IT-4Cl
device  almost  remains  unchanged.  The  rectification  ratio
(at  ±  2  V)  for  device  in  dark  was  increased  by  about  one  or-
der of magnitude compared to that dried in air (Fig. S8).

When using the vacuum-drying method, the charge carri-
er lifetime (τ)  in the device was extended from 3.8 to 12.7 μs,
which  was  deduced  from  transient  photovoltage  (TPV)  data
(Fig.  S9(a)).  The  average  carrier  lifetime  (τavg)  calculated  from
impedance  spectroscopy  (IS)  is  consistent  with  that  from
TPV,  and  it  was  prolonged  from  4.68  to  7.39 μs  (Fig.  S10  and
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Table  S2).  The  charge  extraction  time  (τex)  was  decreased
from 2.8 to 0.6 μs  (Fig.  S9(b)),  deduced from transient  photo-
current  (TPC).  The  equivalent  carrier  mobility  was  increased
from 7.9 × 10–5 to 2.8 × 10–4 cm2/(V·s) (Fig. S11 and Table S3),
deduced  from  photoinduced  charge  carrier  extraction  by  lin-
early  increasing  voltage  (Photo-CELIV).  The  blade-coated  act-
ive layers with vacuum drying treatment led to better charge
transport  and  extraction.  By  using  the  same  processing,
PM6:Y6:PC71BM  solar  cells  (Fig.  S12)  delivered  a  17.01%  PCE
(Fig. S13(a) and Table S1), which was certified to be 16.45% in
South China National  Center  of  Metrology (Fig.  S14).  This  is  a
new  PCE  record  for  the  green-solvent-processed  blade-
coated  solar  cells.  The  device  with  1  cm2 area  gave  a  PCE  of
11.30% (Fig. S13(b)).

In  conclusion,  the  effect  of  vacuum-drying  method  on
the performance of blade-coated OSCs was thoroughly invest-
igated.  For  PHT4:IT-4Cl  device,  a  80%  increase  in  PCE  was
achieved.  The vacuum-drying method leads to smoother film
surface, longer charge carrier lifetime, decreased charge extrac-
tion  time,  and  increased  carrier  mobility.  By  using  this  meth-

od,  PM6:Y6:PC71BM  solar  cells  gave  a  17.01%  PCE  (certified
16.45%).  This  approach may help further  developing efficient
solar modules from green solvents. 
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Fig. 1. (a) Chemical structures of PHT4 and IT-4Cl. (b) Schematic of the blade-coating process with (below) and without (top) vacuum-drying. (c)
Light reflectance vs drying time curves for PHT4:IT-4Cl films. (d) AFM images (size: 4 × 4 μm2). (e) Line-cut profiles of GIWAXS along the out-of-
plane and in-plane directions. (f) J–V curves for devices made with and without vacuum-drying.
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